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A method using eigenfunction expansions has been implemented to determine the diffusion coefficients of
electroactive species. The method has been successfully applied to the process of single-electron oxidation
of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The results obtained by the method agree very well
with those from the well established finite difference algorithm and are more reliable in general than the
conventional Levich equation. The computer code developed is versatile and efficient; the method could
be of wide application.

1. INTRODUCTION

Reaction rates and the mechanisms of many electrochemi-
cal processes are governed by the diffusion of reactants and
product species. Knowledge of diffusion coefficients of the
species involved is of utmost importance in the analysis and
modeling of kinetic data. Electroanalytical techniques, such
as chronopotentiometry, voltammerty, and polarography,
provide simple but effective ways for evaluating diffusion
coefficients of various electroactive species.1 However, the
diffusion coefficients determined from these techniques have
not been widely accepted, because the accuracy is limited
by the validity of the equations describing the electrode
currents.2 For instance, in dropping-mercury electrodes or
rotating-disc electrodes, the relevant equations contain a
number of approximations and assumptions. An alternative
technique is to use the radiotracer method2 which can give
very accurate measurements of diffusion coefficients, but this
technique requires the use of specially labeled chemical
elements which increases the cost significantly.

The channel electrode process is another useful technique
to probe the kinetics and mechanisms of electrochemical
reactions.3 A flow cell consisting of a rectangular duct and
a working electrode is used. Solutions are passed into the
cell under laminar flow condition. Since the hydrodynamics
inside the cell is well defined, the electrode response as a
function of mass transport can be calculated precisely and
compared with the experimental values to gain mechanistic

insight. In this manner, a variety of electrochemical reaction
mechanisms have been resolved.4,5

In solving the convection-diffusion equation with a full
laminar parabolic velocity profile for hydrodynamic electrode
processes, Levich6 assumed a linear velocity profile to derive
an approximate equation (the Levich equation) that yields
the limiting current of the electrode as a simple function of
the flow rate of the solution inside the electrode. The
diffusion coefficient can be evaluated by fitting experimental
data to the Levich equation. In this paper, a more reliable
way of predicting the diffusion coefficients is proposed. The
method is based on an inverse formulation, and the problem
is solved by using an optimal control approach. A cost
function is defined to be the mismatch between the experi-
mental data and that calculated from the convection-diffusion
equation (as defined below by (1.1) in section 2). The
optimal diffusion coefficient is then extracted as that for
which the cost function is minimized. Here, we solve this
optimal control problem by using an eigenfunction expan-
sion. We show that the optimal diffusion coefficient can be
calculated by simply solving a nonlinear equation. The
proposed method is demonstrated by application to the
single-electron oxidation ofN,N,N′,N′-tetramethyl-p-phe-
nylenediamine (TMPD) and compared with the Levich
equation procedure.

2. THEORY

Consider a laminar flow of a solution entering a channel
electrode (see Figure 1) in which the diffusion in the x and
z directions can be neglected. The governing convection-
diffusion equation for this channel electrode process is given
by
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together with the boundary conditions defined in Figure 2,
whereg is the concentration of the species,D is the diffusion
coefficient, andν(y) is the laminar parabolic velocity profile
given by

whereVf is the flow rate of the solution of interest in cm3

s-1, while h andd are defined in Figure 1. This equation
can be simplified slightly using the transformation

and the initial and boundary value problem can be written
as

In terms ofg, the limiting current can be expressed as

whereF is Faraday's constant, whilew andxe are defined in
Figure 1. Consequently, the inverse problem of findingD
can be formulated as

where the{Iexpj} are the experimental limiting currents and
m is the number of data points. Because eq 1.4 can easily
be solved by a two-dimensional finite difference grid
algorithm,7 an obvious way of tackling eq 1.6 is to use a
quasi-Newton optimization technique8 which can be sum-
marized as follows:

(1) Choose an initialD(0).
(2) Solve eq 1.4 usingD(k).
(3) CalculateD(k+1) using a quasi-Newton update.

However, this method requires solving eq 1.4 repeatedly for
each iteration and is therefore expensive and inefficient.
An alternative approach is to make use of the fact that eq

1.4a is linear and homogeneous, so that variables can be

separated by writing

from which eq 1.4a becomes

Using the independence ofx andy, each side of eq 1.8 must
be a fixed constant, to be denotedλ; hence, we can write

Together with the boundary conditions

1.10 and 1.11 form a regular Sturm-Liouville problem9

which has an infinite number of eigenvalues:

furthermore, each eigenvalue corresponds to an eigenfunction
which is unique up to a normalization constant. These
eigenfunctions will be denoted by{Y1,Y2,Y3,...}. Note that
theλ’s take positive values here because negativeλ’s would
produce exponential increasingX(x) which is nonphysical,
while λ ) 0 yields the trivial solutiong ∞ 0. By using the
principle of superposition, the general solutiong can be
written as

where the coefficients{Ai} are to be calculated from the
initial value using

Substituting eq 1.13 into eq 1.5 yields

On using this in eq 1.6, the required diffusion constantD,
appears as an explicit argument ofE; consequently, the
necessary and sufficient conditions for a minimum are simply

3. EXPERIMENT

In a test of this approach, the channel cell shown
schematically in Figure 1 was a rectangular duct (about 4.5
cm long, 0.1 cm deep, and 0.6 cm wide) cut in a block of
Black Derlin (Goodfellow Advanced Materials, Cambridge)
and closed by a cover plate of the same material. A solution
was made to flow through the channel via inlet and outlet
teflon tubes which were attached to the ends of the cell along

Figure 1. Schematic diagram of a flow cell in a channel
electrode: see text for experimental details.
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they-direction. The working electrode was made of platinum
(Goodfellow Advanced Materials, thickness 0.1 mm, purity
99.95%) with dimensions of approximately 4 mm× 4 mm.
Contact with the electrode were maintained through a hole
in the cover plate. The precise dimensions of the electrode
were measured to a precision of(0.002 cm by using a
travelling microscope. Typical values obtained werexe )
0.394 cm,w ) 0.402 cm andd ) 0.601 cm (see Figure 1).
The depth of the cell (2h, in Figure 1) was determined
accurately by using a depth gauge (Mitutoyo, Japan) to within
(0.001 cm. In our case, 2h was found to be 0.0819 cm.
The flow velocity was adjusted by linking the solution

exit to a precalibrated capillary tube. A saturated calomel
reference electrode (SCE) was placed on the upstream side
of the cell, while a platinum counter electrode was situated
downstream from the cell. All electrochemical measurements
were carried out at 25°C using a scan generator and a
potentiostat (Oxford Electrode Ltd, UK) in conjunction with
an Hewlett Packard 7035B X-Y recorder. The TMPD (98%,
Aldrich) was used as received. The supporting electrolyte
was prepared from reagent-grade potassium chloride (Ald-
rich). Solutions used were made from deionized water of
resistivity greater than 107 Ω-cm and degassed thoroughly
with nitrogen prior to use.
We elected to study this system because TMPD is well-

known to be oxidized reversibly to the radical cation at a
half-wave potential of 0.015 V vs. SCE.10 In the present
study, electrochemical experiments were performed using
2.12 mM TMPD in a 0.20 M KCl solution. We varied the
flow rate of the solution while scanning the electrode
potential of the working electrode from-0.2 V to+0.2 V
at 10 mV s-1 corresponding to the transport-limited oxidation
of TMPD. A half-wave potential of 0.01 V (vs SCE) was
found and was observed to be essentially constant and
independent of the solution flow rate which is consistent with
the literature.10 This suggests that the ohmic drop between
the working and reference electrode is negligible.11 We
observed that all voltammetric waves were of smooth
sigmoidal shape and satisfied the Tomes criterion of revers-
ibility. 12 Note that an overpotential of more than 200 mV
was maintained for every measurement to ensure that the
current was limited by mass transfer. Hence it is not
unreasonable to assume that adsorption of TMPD or the
radical cation on the working electrode surface is negligible
(<1%). Under these conditions, the current values obtained
should directly reflect the transport limited currents of the
oxidation process (although a significant adsorption on the
electrode would degrade the accuracy). It must also be
emphasized, however, that the quality of the electrochemical
data will influence the accuracy of the diffusion coefficient
as deduced in the next section.

4. RESULTS AND DISCUSSION

In practice, the Sturm-Liouville problem

is solved using subroutines developed by NAG Ltd.13

A finite number of eigenvalues and eigenfunctions are used
so that eq 1.14 is approximated by the finite series

There are two different ways of calculating the{Ãi}. The
first approach is to make use of the fact that the{Yi(yj)} form
an orthogonal basis with respect to the weight function (1
- yj2) on the interval-1 < yj < 1, so that one has

Another way is to employ all the eigenfunctions in calculat-
ing eachAi by forming the matrix equation

where

and

It turns out that eq 2.3 is more versatile because the addition
of extra eigenfunctions does not affect the previously
calculated coefficients; however, eq 2.5 is numerically more
stable and eq 2.2 converges more rapidly numercially using
fewer eigenfunctions. After finding the coefficients{λhi},
{Ãi}, and{(∂Y(-1)/∂yj)i} they are stored in an archive file
for future retrieval.
Here, we emphasize that even if some of the experimental

parameters such asxe, w, d, and 2h are changed, exactly the
same set of eigenfunctions and eigenvalues can be used. This
is because the eigenvalues and eigenfunctions are found
without invoking any of these parameters. In fact, the most
time-consuming process is finding the eigenvalues and
eigenfunctions which are sought by using the algorithm
described in ref 13. Once this has been done, it takes
virtually no time to determine the diffusion coefficient from
experimental data.
For comparison purposes, we consider the Levich equa-

tion3 in which the parabolic velocity profile eq 1.2 is
simplified to

Note that the approximation of replacing the parabolic
velocity profile by a linear function is satisfactory only when
the flow is dominated by forced convection in the laminar
regime. The analytic solution when using eq 2.6 is given

Figure 2. Representative boundary conditions in the formulation
of the eigenfunction expansion method.
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by3

wherene is the number of electrons transferred. Clearly,
the limiting currentI is a linear function ofVf

1/3; hence, a
linear regression analysis of these two variables allowsD to
be deduced from the slope of theI - Vf

1/3 plot.
First, we illustrate a deficiency of the Levich equation

approach. A hypothetical diffusion coefficient equal to 6.43
× 10-6 cm2 s-1 was assumed, and the finite difference
algorithm with 1000× 1000 mesh points was used to
calculateI in eq 1.5 with 18 different flow rates. The result
from the Levich equation analysis is shown in Figure 3.
Clearly, the predicted diffusion coefficients are very sensitive
to the number of data points used. The Levich equation
method is particularly inaccurate in the slow flow-rate region
where a linear regression analysis is apparently not sufficient.
Secondly, we demonstrate the convergence of the eigen-

function expansion method in computing eq 1.5. The same
diffusion coefficient as in the previous example was used;
the results are compared with those found from the finite
difference algorithm in Figure 4. Clearly, the method
converges nicely and agrees well with the finite difference
algorithm. More importantly, note that the method of
eigenfunction expansions only took a trivial time (about 0.4
s of CPU time on a Digital Unix workstation) to calculate
all the I’s when the set of eigenvalues and eigenfunctions
had been previously stored.
We have also compared the diffusion coefficients calcu-

lated by three different methods, namely the Levich equation,
the finite difference quasi-Newton algorithm, and the eigen-
function expansion method. The experimental results are
displayed in Table 1 for nine different flow rates. When

using the eigenfunction expansion method, the optimizing
equationdE/dD ) 0 was solved by applying Newton’s
method. The results are portrayed in Figure 5. We see that
the Levich equation approach underestimates the diffusion
coefficients systematically owing to its approximate assump-
tion. By contrast the other two methods agree very well.
Although the accuracy for these two methods is the same,
their efficiencies differ greatly. The finite difference quasi-
Newton algorithm took about 60 s of CPU time to calculate
each diffusion coefficient, while the eigenfunction expansion
took virtually nothing to finish the same task (0.4 s of CPU
time on a Digital Unix workstation) once all the required
eigenvalues and eigenfunctions had been stored. Using the

Figure 3. Diffusion coefficients calculated from the Levich
equation as a function of the number of data points used.

I ) 0.925neFwg0(VfD2xe
2

h2d )1/3 (2.7)

Table 1. Experimental Data Obtained by the Channel Electrode Techniquea

Vf (10-3 cm3 s-1) 6.45 9.11 10.9 19.6 27.7 32.4 43.3 52.0 55.7
I (10-5 ampere) 2.62 2.88 3.08 3.74 4.22 4.46 4.89 5.20 5.36

a Bulk concentration of TMPD is 2.12 mM.

Figure 4. Limiting currents (I) as a function of the flow rates (Vf)
evaluated by the finite difference algorithm and eigenfunction
expansion method respectively.

Figure 5. Comparison among three different methods: Levich
equation, finite difference algorithm, and eigenfunction expansions.
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diffusion coefficient extracted from all the nine data points
by the method of eigenfunction expansion, the limiting
currents (which are used to define the cost function in the
optimisation process) were calculated and compared to the
experimental values: see Figure 6.
Finally, the convergence rates of the two different integra-

tion methods eqs 2.3 and 2.5 has also been studied. All nine
data points in Table 1 were used, and the results are shown
in Figure 7 (parts a and b). We see that when eq 2.5 was
used, the results converge much faster. The only disadvan-
tage of using eq 2.5 is that the matrix equation eq 2.4 needs
to be resolved whenever an extra eigenfunction is added.
This increases the cost and complexity of the method.
Consequently, it is generally preferable to use eq 2.3 because
of its versatility in spite of the slower convergence.

5. CONCLUSIONS

An efficient method based on eigenfunction expansions
has been developed to solve the convection-diffusion equa-

tion for a channel electrode system. With this method, one
needs to calculate the necessary eigenvalues and eigenfunc-
tions only once: they can then be used to solve the mass
transport equation for any cell geometry and flow rate of
the solution. We have demonstrated that the optimal
diffusion coefficient of the relevant electroactive species can
be predicted easily by solving a simple nonlinear equation.
The technique has been successfully applied to calculate the
diffusion coefficient of TMPD in aqueous solution. Com-
pared to the conventional approach using Levich’s equation,
our method not only provides a more reliable calculation of
the diffusion coefficient but also has a much higher efficiency
in terms of computational time than the finite difference
quasi-Newton algorithm. Potentially, the eigenfunction
expansion technique can be extended to model the compu-
tational intensive multispecies transport equations of elec-
trochemical interests.

Program and data files are available from one of the
authors, K. Yip upon request.
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Figure 6. Comparison between the limiting currents evaluated from
the eigenfunction expansion method and the experimental data: see
text for experimental details.

Figure 7. (a) Convergence in the calculation of the diffusion
coefficients using the method based on eq 2.3. (b) Convergence in
the calculation of the diffusion coefficients using the method based
on eq 2.5.
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